Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
3.
Clin Infect Dis ; 76(9): 1567-1575, 2023 05 03.
Article in English | MEDLINE | ID: covidwho-2317627

ABSTRACT

BACKGROUND: Post-coronovirus disease (COVID) symptoms can persist several months after severe acute respiratory syndrome coronavirus 2 infection. Little is known, however, about the prevalence of post-COVID condition following infections from Omicron variants and how this varies according to vaccination status. This study evaluates the prevalence of symptoms and functional impairment 12 weeks after an infection by Omicron variants (BA.1 and BA.2) compared with negative controls tested during the same period. METHODS: Outpatient individuals who tested positive or negative for COVID-19 infection between December 2021 and February 2022 at the Geneva University Hospitals were followed 12 weeks after their test date. RESULTS: Overall, 11.7% of Omicron cases had symptoms 12 weeks after the infection compared with 10.4% of individuals who tested negative during the same period (P < .001), and symptoms were much less common in vaccinated versus nonvaccinated individuals with Omicron infection (9.7% vs 18.1%; P < .001). There were no significant differences in functional impairment at 12 weeks between Omicron cases and negative controls, even after adjusting for multiple potential confounders. CONCLUSIONS: The differential prevalence of post-COVID symptoms and functional impairment attributed to Omicron BA.1 and BA.2 infection is low when compared with negative controls. Vaccination is associated with lower prevalence of post-COVID symptoms.


Subject(s)
COVID-19 , Humans , Prevalence , COVID-19/epidemiology , SARS-CoV-2 , Vaccination
4.
Sci Rep ; 13(1): 6013, 2023 04 12.
Article in English | MEDLINE | ID: covidwho-2299634

ABSTRACT

Two successive COVID-19 flares occurred in Switzerland in spring and autumn 2020. During these periods, therapeutic strategies have been constantly adapted based on emerging evidence. We aimed to describe these adaptations and evaluate their association with patient outcomes in a cohort of COVID-19 patients admitted to the hospital. Consecutive patients admitted to the Geneva Hospitals during two successive COVID-19 flares were included. Characteristics of patients admitted during these two periods were compared as well as therapeutic management including medications, respiratory support strategies and admission to the ICU and intermediate care unit (IMCU). A mutivariable model was computed to compare outcomes across the two successive waves adjusted for demographic characteristics, co-morbidities and severity at baseline. The main outcome was in-hospital mortality. Secondary outcomes included ICU admission, Intermediate care (IMCU) admission, and length of hospital stay. A total of 2'983 patients were included. Of these, 165 patients (16.3%, n = 1014) died during the first wave and 314 (16.0%, n = 1969) during the second (p = 0.819). The proportion of patients admitted to the ICU was lower in second wave compared to first (7.4 vs. 13.9%, p < 0.001) but their mortality was increased (33.6% vs. 25.5%, p < 0.001). Conversely, a greater proportion of patients was admitted to the IMCU in second wave compared to first (26.6% vs. 22.3%, p = 0.011). A third of patients received lopinavir (30.7%) or hydroxychloroquine (33.1%) during the first wave and none during second wave, while corticosteroids were mainly prescribed during second wave (58.1% vs. 9.1%, p < 0.001). In the multivariable analysis, a 25% reduction of mortality was observed during the second wave (HR 0.75; 95% confidence interval 0.59 to 0.96). Among deceased patients, 82.3% (78.2% during first wave and 84.4% during second wave) died without beeing admitted to the ICU. The proportion of patients with therapeutic limitations regarding ICU admission increased during the second wave (48.6% vs. 38.7%, p < 0.001). Adaptation of therapeutic strategies including corticosteroids therapy and higher admission to the IMCU to receive non-invasive respiratory support was associated with a reduction of hospital mortality in multivariable analysis, ICU admission and LOS during the second wave of COVID-19 despite an increased number of admitted patients. More patients had medical decisions restraining ICU admission during the second wave which may reflect better patient selection or implicit triaging.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/therapy , Tertiary Care Centers , Switzerland/epidemiology , Hospitalization , Length of Stay , Intensive Care Units , Hospital Mortality , Retrospective Studies
5.
Swiss Med Wkly ; 150: w20446, 2020 12 14.
Article in English | MEDLINE | ID: covidwho-2273782

ABSTRACT

AIMS OF THE STUDY: Hydroxychloroquine and lopinavir/ritonavir have been used as experimental therapies to treat COVID-19 during the first wave of the pandemic. Randomised controlled trials have recently shown that there are no meaningful benefits of these two therapies in hospitalised patients. Uncertainty remains regarding the potential harmful impact of these therapies as very early treatments and their burden to the health care system. The present study investigated the length of hospital stay (LOS), mortality, and costs of hydroxychloroquine, lopinavir/ritonavir or their combination in comparison with standard of care among patients hospitalised for coronavirus disease 2019 (COVID-19). METHODS: This retrospective observational cohort study took place in the Geneva University Hospitals, Geneva, Switzerland (n = 840) between 26 February and 31 May 2020. Demographics, treatment regimens, comorbidities, the modified National Early Warning Score (mNEWS) on admission, and contraindications to COVID-19 treatment options were assessed. Outcomes included LOS, in-hospital mortality, and drug and LOS costs. RESULTS: After successful propensity score matching, patients treated with (1) hydroxychloroquine, (2) lopinavir/ritonavir or (3) their combination had on average 3.75 additional hospitalisation days (95% confidence interval [CI] 1.37–6.12, p = 0.002), 1.23 additional hospitalisation days (95% CI −1.24 – 3.51, p = 0.319), and 4.19 additional hospitalisation days (95% CI 1.52–5.31, p <0.001), respectively, compared with patients treated with the standard of care. Neither experimental therapy was significantly associated with mortality. These additional hospital days amounted to 1010.77 additional days for hydroxychloroquine and hydroxychloroquine combined with lopinavir/ritonavir, resulting in an additional cost of US$ 2,492,214 (95%CI US$ 916,839–3,450,619). CONCLUSIONS: Prescribing experimental therapies for COVID-19 was not associated with a reduced LOS and might have increased the pressure put on healthcare systems.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/epidemiology , Hydroxychloroquine/therapeutic use , Lopinavir/therapeutic use , Ritonavir/therapeutic use , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , COVID-19/mortality , Child , Child, Preschool , Comorbidity , Drug Combinations , Drug Therapy, Combination , Health Expenditures , Hospital Mortality/trends , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Infant , Length of Stay/statistics & numerical data , Lopinavir/administration & dosage , Lopinavir/adverse effects , Middle Aged , Pandemics , Retrospective Studies , Ritonavir/administration & dosage , Ritonavir/adverse effects , SARS-CoV-2 , Severity of Illness Index , Sex Factors , Socioeconomic Factors , Therapies, Investigational/methods , Young Adult
6.
Int J Infect Dis ; 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2049309

ABSTRACT

OBJECTIVE: To describe long-COVID symptoms among older adults, and to assess risk factors for two common long-COVID symptoms: fatigue and dyspnea. METHODS: Multicenter prospective cohort study, conducted in Israel, Switzerland, Spain, and Italy. Included were individuals at least 30 days since COVID-19 diagnosis. We compared long-COVID symptoms between elderly individuals (age>65 years) and younger population (18-65 years); and conducted univariate and multivariable analyses for predictors of long-COVID fatigue and dyspnea. RESULTS: 2333 individuals were evaluated at an average of 5 months [146 days (95% CI 142-150)] following COVID-19 onset. Mean age was 51 and 20.5% were>65 years. Older adults were more likely to be symptomatic, with most common symptoms being fatigue (38%) and dyspnea (30%). They were more likely to complain of cough and arthralgia, and have abnormal chest imaging and pulmonary function tests. Independent risk factors for long-COVID fatigue and dyspnea included female gender, obesity, and closer proximity to COVID-19 diagnosis; older age was not an independent predictor. CONCLUSIONS: Older individuals with long-COVID, have different persisting symptoms, with more pronounced pulmonary impairment. Women and individuals with obesity are at risk. Further research is warranted to investigate the natural history of long-COVID among the elderly population and to assess possible interventions aimed at promoting rehabilitation and well-being.

7.
Nat Commun ; 13(1): 3840, 2022 07 04.
Article in English | MEDLINE | ID: covidwho-1991578

ABSTRACT

Emerging SARS-CoV-2 variants raise questions about escape from previous immunity. As the population immunity to SARS-CoV-2 has become more complex due to prior infections with different variants, vaccinations or the combination of both, understanding the antigenic relationship between variants is needed. Here, we have assessed neutralizing capacity of 120 blood specimens from convalescent individuals infected with ancestral SARS-CoV-2, Alpha, Beta, Gamma or Delta, double vaccinated individuals and patients after breakthrough infections with Delta or Omicron-BA.1. Neutralization against seven authentic SARS-CoV-2 isolates (B.1, Alpha, Beta, Gamma, Delta, Zeta and Omicron-BA.1) determined by plaque-reduction neutralization assay allowed us to map the antigenic relationship of SARS-CoV-2 variants. Highest neutralization titers were observed against the homologous variant. Antigenic cartography identified Zeta and Omicron-BA.1 as separate antigenic clusters. Substantial immune escape in vaccinated individuals was detected for Omicron-BA.1 but not Zeta. Combined infection/vaccination derived immunity results in less Omicron-BA.1 immune escape. Last, breakthrough infections with Omicron-BA.1 lead to broadly neutralizing sera.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies , COVID-19/prevention & control , Humans , Vaccination
8.
Prev Med Rep ; 29: 101899, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1983824

ABSTRACT

Healthcare workers have potentially been among the most exposed to SARS-CoV-2 infection as well as the deleterious toll of the pandemic. This study has the objective to differentiate the pandemic toll from post-acute sequelae of SARS-CoV-2 infection in healthcare workers compared to the general population. The study was conducted between April and July 2021 at the Geneva University Hospitals, Switzerland. Eligible participants were all tested staff, and outpatient individuals tested for SARS-CoV-2 at the same hospital. The primary outcome was the prevalence of symptoms in healthcare workers compared to the general population, with measures of COVID-related symptoms and functional impairment, using prevalence estimates and multivariable logistic regression models. Healthcare workers (n = 3083) suffered mostly from fatigue (25.5 %), headache (10.0 %), difficulty concentrating (7.9 %), exhaustion/burnout (7.1 %), insomnia (6.2 %), myalgia (6.7 %) and arthralgia (6.3 %). Regardless of SARS-CoV-2 infection, all symptoms were significantly higher in healthcare workers than the general population (n = 3556). SARS-CoV-2 infection in healthcare workers was associated with loss or change in smell, loss or change in taste, palpitations, dyspnea, difficulty concentrating, fatigue, and headache. Functional impairment was more significant in healthcare workers compared to the general population (aOR 2.28; 1.76-2.96), with a positive association with SARS-CoV-2 infection (aOR 3.81; 2.59-5.60). Symptoms and functional impairment in healthcare workers were increased compared to the general population, and potentially related to the pandemic toll as well as post-acute sequelae of SARS-CoV-2 infection. These findings are of concern, considering the essential role of healthcare workers in caring for all patients including and beyond COVID-19.

9.
Rev Med Suisse ; 18(777): 702-706, 2022 Apr 13.
Article in French | MEDLINE | ID: covidwho-1789998

ABSTRACT

COVID-19 has strongly impacted the elderly population with a particularly high mortality rate due to several reasons: sometimes difficult and delayed diagnosis, multimorbidity, immunosenescence, frailty, which seems to be a better prognostic marker than age. Treatment includes both therapies specifically directed against SARS CoV-2 (monoclonal antibodies, systemic corticosteroids, tocilizumab, remdesivir) and symptomatic and palliative treatments. Vaccination, especially the booster, is essential to reduce the risk of infection and severe forms. The emergence of variants is a challenge because of their impact on vaccine and treatment efficacy. Specific studies in the elderly are needed to improve their management.


Le Covid-19 a fortement impacté la population âgée avec un taux de mortalité particulièrement élevé dû à plusieurs raisons: diag nostic parfois difficile et retardé, multimorbidité, immunosénescence, fragilité, qui semble d'ailleurs être un meilleur marqueur pronostique que l'âge. Le traitement inclut autant des thérapies spécifiquement dirigées contre le SARS CoV-2 (anticorps monoclonaux, corticothérapie systémique, tocilizumab, remdésivir) que des traitements symptomatiques et palliatifs. La vaccination, notamment le rappel, est primordiale pour diminuer le risque infectieux et les formes graves. L'apparition de variants représente un défi en raison de leur impact sur l'efficacité du vaccin et des traitements. Des études réalisées spécifiquement chez les sujets âgés sont nécessaires pour améliorer leur prise en charge.


Subject(s)
COVID-19 , Frailty , Aged , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination
10.
Nat Med ; 28(7): 1491-1500, 2022 07.
Article in English | MEDLINE | ID: covidwho-1784006

ABSTRACT

Infectious viral load (VL) expelled as droplets and aerosols by infected individuals partly determines transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RNA VL measured by qRT-PCR is only a weak proxy for infectiousness. Studies on the kinetics of infectious VL are important to understand the mechanisms behind the different transmissibility of SARS-CoV-2 variants and the effect of vaccination on transmission, which allows guidance of public health measures. In this study, we quantified infectious VL in individuals infected with SARS-CoV-2 during the first five symptomatic days by in vitro culturability assay in unvaccinated or vaccinated individuals infected with pre-variant of concern (pre-VOC) SARS-CoV-2, Delta or Omicron BA.1. Unvaccinated individuals infected with pre-VOC SARS-CoV-2 had lower infectious VL than Delta-infected unvaccinated individuals. Full vaccination (defined as >2 weeks after receipt of the second dose during the primary vaccination series) significantly reduced infectious VL for Delta breakthrough cases compared to unvaccinated individuals. For Omicron BA.1 breakthrough cases, reduced infectious VL was observed only in boosted but not in fully vaccinated individuals compared to unvaccinated individuals. In addition, infectious VL was lower in fully vaccinated Omicron BA.1-infected individuals compared to fully vaccinated Delta-infected individuals, suggesting that mechanisms other than increased infectious VL contribute to the high infectiousness of SARS-CoV-2 Omicron BA.1. Our findings indicate that vaccines may lower transmission risk and, therefore, have a public health benefit beyond the individual protection from severe disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Serologic Tests , Viral Load
11.
J Intern Med ; 292(1): 103-115, 2022 07.
Article in English | MEDLINE | ID: covidwho-1769735

ABSTRACT

BACKGROUND: Persistent symptoms of SARS-CoV-2 are prevalent weeks to months following the infection. To date, it is difficult to disentangle the direct from the indirect effects of SARS-CoV-2, including lockdown, social, and economic factors. OBJECTIVE: The study aims to characterize the prevalence of symptoms, functional capacity, and quality of life at 12 months in outpatient symptomatic individuals tested positive for SARS-CoV-2 compared to individuals tested negative. METHODS: From 23 April to 27 July 2021, outpatient symptomatic individuals tested for SARS-CoV-2 at the Geneva University Hospitals were followed up 12 months after their test date. RESULTS: At 12 months, out of the 1447 participants (mean age 45.2 years, 61.2% women), 33.4% reported residual mild to moderate symptoms following SARS-CoV-2 infection compared to 6.5% in the control group. Symptoms included fatigue (16% vs. 3.1%), dyspnea (8.9% vs. 1.1%), headache (9.8% vs. 1.7%), insomnia (8.9% vs. 2.7%), and difficulty concentrating (7.4% vs. 2.5%). When compared to the control group, 30.5% of SARS-CoV-2 positive individuals reported functional impairment at 12 months versus 6.6%. SARS-CoV-2 infection was associated with the persistence of symptoms (adjusted odds ratio [aOR] 4.1; 2.60-6.83) and functional impairment (aOR 3.54; 2.16-5.80) overall, and in subgroups of women, men, individuals younger than 40 years, those between 40-59 years, and in individuals with no past medical or psychiatric history. CONCLUSION: SARS-CoV-2 infection leads to persistent symptoms over several months, including in young healthy individuals, in addition to the pandemic effects, and potentially more than other common respiratory infections. Symptoms impact functional capacity up to 12 months post infection.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Communicable Disease Control , Female , Humans , Male , Middle Aged , Pandemics , Quality of Life
12.
Clin Infect Dis ; 74(4): 622-629, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1713621

ABSTRACT

BACKGROUND: Serological assays detecting anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies are being widely deployed in studies and clinical practice. However, the duration and effectiveness of the protection conferred by the immune response remains to be assessed in population-based samples. To estimate the incidence of newly acquired SARS-CoV-2 infections in seropositive individuals as compared to seronegative controls, we conducted a retrospective longitudinal matched study. METHODS: A seroprevalence survey including a representative sample of the population was conducted in Geneva, Switzerland, between April and June 2020, immediately after the first pandemic wave. Seropositive participants were matched one-to-two to seronegative controls, using a propensity-score including age, gender, immunodeficiency, body mass index (BMI), smoking status, and education level. Each individual was linked to a state-registry of SARS-CoV-2 infections. Our primary outcome was confirmed infections occurring from serological status assessment to the end of the second pandemic wave (January 2021). RESULTS: Among 8344 serosurvey participants, 498 seropositive individuals were selected and matched with 996 seronegative controls. After a mean follow-up of 35.6 (standard deviation [SD] 3.2) weeks, 7 out of 498 (1.4%) seropositive subjects had a positive SARS-CoV-2 test, of whom 5 (1.0%) were classified as reinfections. In contrast, the infection rate was higher in seronegative individuals (15.5%, 154/996) during a similar follow-up period (mean 34.7 [SD 3.2] weeks), corresponding to a 94% (95% confidence interval [CI]: 86%- 98%, P < .001) reduction in the hazard of having a positive SARS-CoV-2 test for seropositives. CONCLUSIONS: Seroconversion after SARS-CoV-2 infection confers protection against reinfection lasting at least 8 months. These findings could help global health authorities establishing priority for vaccine allocation.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/epidemiology , Cohort Studies , Humans , Reinfection , Retrospective Studies , Seroconversion , Seroepidemiologic Studies
13.
Swiss Med Wkly ; 151: w30105, 2021 11 22.
Article in English | MEDLINE | ID: covidwho-1689912

ABSTRACT

BACKGROUND: When the periods of time during and after the first wave of the ongoing SARS-CoV-2/COVID-19 pandemic in Europe are compared, the associated COVID-19 mortality seems to have decreased substantially. Various factors could explain this trend, including changes in demographic characteristics of infected persons and the improvement of case management. To date, no study has been performed to investigate the evolution of COVID-19 in-hospital mortality in Switzerland, while also accounting for risk factors. METHODS: We investigated the trends in COVID-19-related mortality (in-hospital and in-intermediate/intensive-care) over time in Switzerland, from February 2020 to June 2021, comparing in particular the first and the second wave. We used data from the COVID-19 Hospital-based Surveillance (CH-SUR) database. We performed survival analyses adjusting for well-known risk factors of COVID-19 mortality (age, sex and comorbidities) and accounting for competing risk. RESULTS: Our analysis included 16,984 patients recorded in CH-SUR, with 2201 reported deaths due to COVID-19 (13.0%). We found that overall in-hospital mortality was lower during the second wave of COVID-19 than in the first wave (hazard ratio [HR] 0.70, 95% confidence interval [CI] 0.63- 0.78; p <0.001), a decrease apparently not explained by changes in demographic characteristics of patients. In contrast, mortality in intermediate and intensive care significantly increased in the second wave compared with the first wave (HR 1.25, 95% CI 1.05-1.49; p = 0.029), with significant changes in the course of hospitalisation between the first and the second wave. CONCLUSION: We found that, in Switzerland, COVID-19 mortality decreased among hospitalised persons, whereas it increased among patients admitted to intermediate or intensive care, when comparing the second wave to the first wave. We put our findings in perspective with changes over time in case management, treatment strategy, hospital burden and non-pharmaceutical interventions. Further analyses of the potential effect of virus variants and of vaccination on mortality would be crucial to have a complete overview of COVID-19 mortality trends throughout the different phases of the pandemic.


Subject(s)
COVID-19 , Hospital Mortality , Hospitals , Humans , Pandemics , SARS-CoV-2 , Switzerland/epidemiology
14.
J Clin Med ; 11(4)2022 Feb 09.
Article in English | MEDLINE | ID: covidwho-1674687

ABSTRACT

BACKGROUND: Long COVID has become a burden on healthcare systems worldwide. Research into the etiology and risk factors has been impeded by observing all diverse manifestations as part of a single entity. We aimed to determine patterns of symptoms in convalescing COVID-19 patients. METHODS: Symptomatic patients were recruited from four countries. Data were collected regarding demographics, comorbidities, acute disease and persistent symptoms. Factor analysis was performed to elucidate symptom patterns. Associations of the patterns with patients' characteristics, features of acute disease and effect on daily life were sought. RESULTS: We included 1027 symptomatic post-COVID individuals in the analysis. The majority of participants were graded as having a non-severe acute COVID-19 (N = 763, 74.3%). We identified six patterns of symptoms: cognitive, pain-syndrome, pulmonary, cardiac, anosmia-dysgeusia and headache. The cognitive pattern was the major symptoms pattern, explaining 26.2% of the variance; the other patterns each explained 6.5-9.5% of the variance. The cognitive pattern was higher in patients who were outpatients during the acute disease. The pain-syndrome pattern was associated with acute disease severity, higher in women and increased with age. The pulmonary pattern was associated with prior lung disease and severe acute disease. Only two of the patterns (cognitive and cardiac) were associated with failure to return to pre-COVID occupational and physical activity status. CONCLUSION: Long COVID diverse symptoms can be grouped into six unique patterns. Using these patterns in future research may improve our understanding of pathophysiology and risk factors of persistent COVID, provide homogenous terminology for clinical research, and direct therapeutic interventions.

15.
Clin Microbiol Infect ; 27(8): 1109-1117, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1230414

ABSTRACT

BACKGROUND: Many new variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been termed variants of concern/interest (VOC/I) because of the greater risk they pose due to possible enhanced transmissibility and/or severity, immune escape, diagnostic and/or treatment failure, and reduced vaccine efficacy. AIMS: We sought to review the current knowledge of emerging SARS-CoV-2 variants, particularly those deemed VOC/Is: B.1.351, B.1.1.7, and P.1. SOURCES: MEDLINE and BioRxiv databases, as well as the grey literature, were searched for reports of SARS-CoV-2 variants since November 2020. Relevant articles and their references were screened. CONTENT: Mutations on the spike protein in particular may affect both affinity for the SARS-CoV-2 cell receptor ACEII and antibody binding. These VOC/Is often share similar mutation sets. The N501Y mutation is shared by the three main VOCs: B.1.1.7, first identified in the United Kingdom, P.1, originating from Brazil, and B.1.351, first described in South Africa. This mutation likely increases transmissibility by increasing affinity for ACEII. The B.1.351 and P.1 variants also display the E484K mutation which decreases binding of neutralizing antibodies, leading to partial immune escape; this favours reinfections, and decreases the in vitro efficacy of some antibody therapies or vaccines. Those mutations may also have phenotypical repercussions of greater severity. Furthermore, the accumulation of mutations poses a diagnostic risk (lowered when using multiplex assays), as seen for some assays targeting the S gene. With ongoing surveillance, many new VOC/Is have been identified. The emergence of the E484K mutation independently in different parts of the globe may reflect the adaptation of SARS-CoV-2 to humans against a background of increasing immunity. IMPLICATIONS: These VOC/Is are increasing in frequency globally and pose challenges to any herd immunity approach to managing the pandemic. While vaccination is ongoing, vaccine updates may be prudent. The virus continues to adapt to transmission in humans, and further divergence from the initial Wuhan sequences is expected.


Subject(s)
Antibodies, Viral/immunology , COVID-19/epidemiology , Genetic Variation , Pandemics , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Brazil/epidemiology , COVID-19/transmission , COVID-19/virology , Epidemiological Monitoring , Humans , Mutation , SARS-CoV-2/genetics , South Africa/epidemiology , United Kingdom/epidemiology
16.
Clin Microbiol Infect ; 2021 Feb 20.
Article in English | MEDLINE | ID: covidwho-1146230

ABSTRACT

OBJECTIVES: To report a case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection 6 months after the first infection in a young healthy female physician. Both episodes led to mild coronavirus disease 2019 (COVID-19). METHODS: SARS-CoV-2 infections were detected by real-time reverse transcriptase PCR (RT-PCR) on nasopharyngeal specimens. Reinfection was confirmed by whole-genome sequencing. Kinetics of total anti-S receptor binding domain immunoglobulins (Ig anti-S RBD), anti-nucleoprotein (anti-N) and neutralizing antibodies were determined in serial serum samples retrieved during both infection episodes. Memory B-cell responses were assessed at day 12 after reinfection. RESULTS: Whole-genome sequencing identified two different SARS-CoV-2 genomes both belonging to clade 20A, with only one nonsynonymous mutation in the spike protein and clustered with viruses circulating in Geneva (Switzerland) at the time of each of the corresponding episodes. Seroconversion was documented with low levels of total Ig anti-S RBD and anti-N antibodies at 1 month after the first infection, whereas neutralizing antibodies quickly declined after the first episode and then were boosted by the reinfection, with high titres detectable 4 days after symptom onset. A strong memory B-cell response was detected at day 12 after onset of symptoms during reinfection, indicating that the first episode elicited cellular memory responses. CONCLUSIONS: Rapid decline of neutralizing antibodies may put medical personnel at risk of reinfection, as shown in this case. However, reinfection leads to a significant boosting of previous immune responses. Larger cohorts of reinfected subjects with detailed descriptions of their immune responses are needed to define correlates of protection and their duration after infection.

18.
PLoS Biol ; 18(12): e3000963, 2020 12.
Article in English | MEDLINE | ID: covidwho-1040033

ABSTRACT

Approximately 28% of the human population have been exposed to Mycobacterium tuberculosis (MTB), with the overwhelming majority of infected individuals not developing disease (latent TB infection (LTBI)). While it is known that uncontrolled HIV infection is a major risk factor for the development of TB, the effect of underlying LTBI on HIV disease progression is less well characterized, in part because longitudinal data are lacking. We sorted all participants of the Swiss HIV Cohort Study (SHCS) with at least 1 documented MTB test into one of the 3 groups: MTB uninfected, LTBI, or active TB. To detect differences in the HIV set point viral load (SPVL), linear regression was used; the frequency of the most common opportunistic infections (OIs) in the SHCS between MTB uninfected patients, patients with LTBI, and patients with active TB were compared using logistic regression and time-to-event analyses. In adjusted models, we corrected for baseline demographic characteristics, i.e., HIV transmission risk group and gender, geographic region, year of HIV diagnosis, and CD4 nadir. A total of 13,943 SHCS patients had at least 1 MTB test documented, of whom 840 (6.0%) had LTBI and 770 (5.5%) developed active TB. Compared to MTB uninfected patients, LTBI was associated with a 0.24 decreased log HIV SPVL in the adjusted model (p < 0.0001). Patients with LTBI had lower odds of having candida stomatitis (adjusted odds ratio (OR) = 0.68, p = 0.0035) and oral hairy leukoplakia (adjusted OR = 0.67, p = 0.033) when compared to MTB uninfected patients. The association of LTBI with a reduced HIV set point virus load and fewer unrelated infections in HIV/TB coinfected patients suggests a more complex interaction between LTBI and HIV than previously assumed.


Subject(s)
HIV Infections/complications , Latent Tuberculosis/complications , Latent Tuberculosis/diagnosis , AIDS-Related Opportunistic Infections/complications , AIDS-Related Opportunistic Infections/etiology , AIDS-Related Opportunistic Infections/microbiology , Adult , CD4-Positive T-Lymphocytes , Cohort Studies , Disease Progression , Female , HIV Infections/metabolism , HIV-1/pathogenicity , Humans , Interferon-gamma , Latent Tuberculosis/metabolism , Male , Middle Aged , Mycobacterium tuberculosis/pathogenicity , Opportunistic Infections/complications , Risk , Tuberculosis/complications , Tuberculosis/diagnosis , Viral Load/immunology
19.
mSphere ; 5(6)2020 11 11.
Article in English | MEDLINE | ID: covidwho-920898

ABSTRACT

Viral shedding patterns and their correlations with immune responses are still poorly characterized in mild coronavirus (CoV) disease 2019 (COVID-19). We monitored shedding of viral RNA and infectious virus and characterized the immune response kinetics of the first five patients quarantined in Geneva, Switzerland. High viral loads and infectious virus shedding were observed from the respiratory tract despite mild symptoms, with isolation of infectious virus and prolonged positivity by reverse transcriptase PCR (RT-PCR) until days 7 and 19 after symptom onset, respectively. Robust innate responses characterized by increases in activated CD14+ CD16+ monocytes and cytokine responses were observed as early as 2 days after symptom onset. Cellular and humoral severe acute respiratory syndrome (SARS)-CoV-2-specific adaptive responses were detectable in all patients. Infectious virus shedding was limited to the first week after symptom onset. A strong innate response, characterized by mobilization of activated monocytes during the first days of infection and SARS-CoV-2-specific antibodies, was detectable even in patients with mild disease.IMPORTANCE This work is particularly important because it simultaneously assessed the virology, immunology, and clinical presentation of the same subjects, whereas other studies assess these separately. We describe the detailed viral and immune profiles of the first five patients infected by SARS-CoV-2 and quarantined in Geneva, Switzerland. Viral loads peaked at the very beginning of the disease, and infectious virus was shed only during the early acute phase of disease. No infectious virus could be isolated by culture 7 days after onset of symptoms, while viral RNA was still detectable for a prolonged period. Importantly, we saw that all patients, even those with mild symptoms, mount an innate response sufficient for viral control (characterized by early activated cytokines and monocyte responses) and develop specific immunity as well as cellular and humoral SARS-CoV-2-specific adaptive responses, which already begin to decline a few months after the resolution of symptoms.


Subject(s)
Adaptive Immunity , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Immunity, Innate , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Viral Load , Virus Shedding , Adult , Aged , Antibodies, Viral/metabolism , Betacoronavirus/isolation & purification , Biomarkers/metabolism , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Cytokines/metabolism , Humans , Kinetics , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL